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I. Introduc ion 

The a ochastic proc s s v riously c lled br nc in , birth, 

or ul iplic tiv proc sses h v b n consid red by writ rs in 

any diff r nt fields durin h p st 1 h y-odd y r • e shall· 

not try to characteriz such proc sse ma h a ically, al hou h 

certain rela d mathe atical prop r i s ill a p r in all the 

proc sse w t dy. Physically sp a in may say th t th y 

r pr s n the volution of a gre a es or syste s hos e co ponents 

c n rep oduce, be ransfonn d, d di I h rans tions b in 

gov rn d by probability 1 ws. he ich hav b n most 

fr equen ly consi red in pplic tion r t prop tion of 

h n and ni 1 speci s nd nes , nucl chain r ctions , 

el c ronic ·c scad P e en .. fir t, d proba ly b st 

hem t c 1 model, c 11 co i er in S ction II , 

OS in conn ctio i e pr oble of th x inc ion of f i y 

s r s nd s r e y ~-1 on and · tson [ 1] s far bac 

s 73 . 

s e s ou d ex c h ical od ls 

0 o a e ossi e a. oro ic tr a 

aub c ar r d c ov rs plifica io 

c n r c ic p c io s o 

ich re si .ple 

nt of the 

11 y . 

.o ve en 
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For a good  historical  account   of  the  subject,   mcludinf many 

references  to applications,  as well  as   interesting  original work, 

re  refer the  reader  to   papers  by M,   S.   Bartlett  [2] and  David G. 

tndall  f}]   .     Their  bibliographies,   together with  that  at  the 

en3k of  this  paper,   give  fairly  comprehens.'.ve, although  not 

";r^.etely  exhaustive,   references  to  what  has  been  written  in 

the  flfclcl.     It   is   unfortunate  that   some  work done  during  the war, 

and   cla\^ifiad,   is   still  not available. 

Tht fpeoefrt   pap^r   consiJers   a  number of  stochastic   processes 

which have  been used  as Models  for branching phenomena.     W» ahali 

. c on cern^ikM^pi A limiting theorems  and  limiting 

distributions  giving the behavior of the  systems  studied after 

long  periods of tiae.     One pattern recurs  often enough to make 

the  following statement   plausible,  although a general mathematical 

formulation  has  not   been £iv^n^|Ii>  iJ-sVrongly  Buggeedeü  Uj   - 

raeults  of Everett  and  Ulaa [4J alfd  vari< 

ana Ballnan and Harris  [0]. 

Consider a  family   of objects.   VEac^  object   is  described at 

a  given  instant   of   time   by a vector  quantity x,   wr.ere  x may 

describe the age,   energy,  position in space,  or a  combination 

of these or  other traits.     The  quantity  x   for a  given  object may 

vary with  time   in  a  deterministic  or  a   random  fashion.     In 

adlition,  there   is   a  law for  the   probability that  an  object  of 

"type"  x,  existing  at  time  t,   will  produce   (or  be  transformed 

into)   a given aggregate  of objects at  time t' > t;     for example, 

.ous results  of Harri»-jl5j_ 

2 
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we may prescribe, for the disjoint sets X,, i2, ' '' , of x—values 

and the integers k, , k^. , •••, the probability that starting with 

an object of type x at t, there will be k, objects at t' whose 

x-coordinates belong to X, , k^ ww^«« «^^„.w ^^* - - v.-»^. ^ .^ --^ ^ 

etc.  Thus we might prescribe the probability that an object of 

age y   bo transform;d into k]   objects of age < x, and k2 of age > 

x, . 

Now let N(t) be the number of objects at time t, and let 

PtU) be the "distribution" of the population at t.  (Pj-U) is 

not a probability distribution; it is a random cuantity giving 

the number of objects in the set X at t.)  Assume that the system 

aealt with is one which will grow in size without limit as t—>OD. 

Then, under various conditions, it will be true that 

(a) N( t) / E[)J( t )J converges with probability 1 as L->CD to 

a random variable, E[}l(t)J being the expected value of N(t). 

(b) Pt(X)/N(t) converges with probability 1, in some sense, 

to a constant distribution Q(l) ; (i.e., the same for all realiza-- 

tions of the system.) 

It appears to be a matter of considerable interest to 

determine broad conditions under which (a) and (b) are true. 

They will be demonstrated for some of the systems considered in 

this paper. 

In addition to limiting theorems we shall consider various 

results especially applicable to the classical model of Galton 

and Watson, and its multidimensional generalization.  In particular 
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we   shall  describe briefly  some  work  of  the  Russian  school  not  yet 

available  in  English. 
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In this section e consider the original Galton-W tson mo el. 

It has been used by many iters, and many of its properties have 

been discovered and rediscovered s v ral tim s. In spite of ita 

simplicity it is of consid rable import nc , p rtly because there 

re i trinsical ly interes ing mathematical probl ems connected with 

it , many of th still unsolved; partly bee use many results 

connected with it can b holly or parti~lly gener liz d to more 

co plicated odels. 

n this sche we con ider &n initial object (ancestor) 

fo in the zero-gen ra ion. This obj ct has probabilities 

Prs r • , 1, · , ···,of producin r objects, hich will con

stitut th first ener tion. Each object in the first enera tion 

ha he same prob b lities as the ancestor o producing a given 

n ber of children," independ ntly of ha is produced by any 

other o j c ·n its gener ion or pr c in ones . Formally e 

can efin th sequ nee of rando variables z
0

, n • 0, 1, •••, 

her zn is the number of objects in the nth gen~r tion, by 

P( z0 • 1 ) • 1 , 

P(z 1 • r ) • p r' r • 0 , 1 • • • ' ' , 

nd the r q irement that if zn • j, then zn+l is th sum of j 

independen rando variables each hav n the same distribution 

as z 1 • (If zn • 0 , zn+ 1 • • ) 

e define the gener ting function of z 1 by 
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r-l)   r 

Throughout  Section  II  we   shall  assume,   unless   the  contrary  is  stated, 

ths*-   >   r  p    < OD.     This   insures  the existence   of  second  moments  for 

all  the  random variables with which we  shall  be  concerned.     We  shall 

also exclude  the  trivial   cases   (O  Po   *  Pj   "   »i     and   (2)   f(s)   -  » 

for some  integer k. 

The   following  facts  ^re  then well   known. 

(a)     The generating   function  of  z     is   f   (s),  defined  by 
^ n n       ' J 

fo(s)   -  s 

fr,»,<s)   *  ^tn'9']. U 0,   1 , 

(b)     Let 

Ez,   -  f'(1 )   - m 

Varlar.ce   ( z, )   -  f" (1 )   ^  m  - m4i   -  cr . 

Then 

(1) 

n hz    ■ m    , n ' 

Var   (z   )   -   crnAmn- 1 )/(m^-m) ,       m /  1; n 

Var   ( z   ) *   no"* , n m ■  1 . 

(c)     If m v  1   the   probability  is   1   that   z     - 0  for some  n. 

If  m >  1 ,   let  a  be   the   unique   root   in  the   half   open   interval   [O,   l) 
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of the equat ion 

a • f(a). 

T en ith prob bility !, zn • 0 for some n and ith probability 

1 -a, zn~ Q) . 

(d) If m > 1 the random variable 

converges in distribution to a random variable w whose moment

genera ing function ~(s) sa isfies 

( 2) ~ ( ms) • f [p ( ) ] , R (s) 0, 

~(s) - E s 

its e sh 11 se , many properties of the distribution of w can be 

d duced from (2) . 

Mhe res lt ( ) is originally due to Gal on and 'atson and 

has be n rediscovered number of times; (b) and (c) have lik wise 

een found sev ral times; (d) appe rs to be d e first to Haw ina 

nd Ulam [7] and s obtai ed independently by Yaglom ( 8] . 

next consid r co vergence of the ctual sample sequences 

For this p rpose we note th mportant relations 

( 3) {zn plzn) • b(zn plzn ' zn-1 ' ••• zo) , 

• mPz n , p - 0, 1 , 

E{ n+pzn) -mPEzn , p • 0 1 ' 
• • • 
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From   (3),   ana  the  definition  of w    •   z  /m     .we  have • n n7        ' 

(4) K(w       Iw   )   -  E(w'     |w   ,   w     . i   *••.   w0) n-^p'   n n-^p'   n*     n-i ' •     L 

■ wn, P - Ü,   1,   *'' ; 

t (w   ^   w   )   ■   Ew* , p   ^  J ,   1 ,    • • • . 
n-»p  n n' K '      ' 

T^le  relations   (3)   fand   iU),   or  something anclo/^ous,  hold   in all  the 

models   we   shall   consider. 

We   have  alreaay mentioned  that   if m <   1   the   seruence   't   ,   and 
J — n 

hence w , converges to o with probability 1.  If m > 1 we have 

Theorem 1k  If m > 1, w  converges to a random variable w with 
 —— -    —       n      f'— — —      ■ -      

probability 1. 

The proof follows from (4), according to which 

(5) E(w ^  - w )  - Ew'\  - c* w n-^p   n     n* 
2 ?. 2 

" Ew ,  - £w p   n     n*p    n 

From (1), 

^ (6) E^ . , , ^_ - -^ 
ra - m  m (m — m) 

whence 

(7) E(wn^p - wn)' - OU"n) ,      m > 1. 

From (7) it follows that w  converges in mean sruare to a random 



variable w and that 

(X) 

(g) L E(w 
n•1 
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From (8) it then follows that wn converges with probability 1 to w. 

It should be noted th t by virtue of (4) the random variables 

w f orm what Doob has called a martingale. n Moreover, since w > 0 
~ n -

we l av lw r -n ince the qu titles Efwnf are uniformly 

bounded it follows from a theorem of Doob [9] that the wn converge 

with probability 1. Moreover, this argument does not require the 

existence of second moments, whi ch we have assumed. However, the 

argument depending on second moments appears easier to gener l i ze 

to more elaborate odels . It also gives a convenient bound for 

the r ate of conver ence. 

The functional equation (2) , sometimes called Koenigs' quation, 

s ometimes Schroeder's equation [1 OJ , [11], [t 2] , after 19th century 

mathematicians who studied it, can be used to find the behavior of 

~ls) on the imaginary s-axis, the negative real s-axis, and, 

if it exists, on the positive rea l s-axis . Then, using various 

kinds of auberian theorems, propert i es of the distri bution of 

~can be inferred . Some details can be found in [5] , but a great 

deal rem ins to be one n this direction. 

· 'e now consider some limiting theorems of di fferent sort . 

he fact tha zn ~ 0 when m 5 1 ma es the limiting situation look 

uninteresting . However, Yaglom [8] not iced that we get nontrivial 

limiting dist ri butions in this case if we consider the conditional 
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di Ftri but ior.   of   z   ,    Tiven  Ihr. ♦    z     / 0. n n 

Theorem  2   (Yaglora).     Le_t  g   (s)   _be   the   conditi or.öl  genervt Ing  l\.r.ction 

of   z   ,  ^iven   z     / 0, 

f   (s)   -  f   (0) 
g   (s)   -  2 srP(z   - rjz/ J) •*--. n n' 1   -  f   [ u ] rcl 

Then  if in ^  1 , 

lim    g   (s)   -   g(3 
n —>u) 

v. ^! e r e  £{z)   sat, is Ties  the   functional  equation 

g[f(£)]   - mg(s)   ♦   1   - c, Is!   ^ 1   , 

*; (i) - i, g' (i -) - K, 

K   -   lim   [1   -   f   (ü)]/mn . n n->aü 

The proof is carried out using the clßssical work of Koonigs. 

The limiting distriuutione consiaered in Theorems 1 and ^ can 

assume a great variety of forms for any value of tn, depending on the 

exact form of f(s).  It is therefore noteworthy th^t when m - 1 

there is a universal limiting aistriDution, df      In Theorem 3, 

first proved for the special case f(s) ■ e    l    sher [l 3j. 

__       3 
Theorem  3   (Yaglora).     nssujne  m   -   1   and y    r  p     v cu.     Then 
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lim P(2zn/(nf" (1 )) < ufzn f J • 0 
n m 

-u if u < 0 __ru! 1- e if u > 0. 

) ,_ nf" ( ) / 2, n m. Th proof of 

Theorem J is carried out s ing t eorem of Fatou [1(1 on iteration 

of functions in t he nei hbori ~od of fixed point ith derivative 1. 

... no h r y of limitin distribu ion is o a om in r in 

h cas m - 1 • n may co sider h di ribu ion of zn, iven 

zn+p 0 , here p is a positive i nteger. ,.. gener ti function 

of this dis ribution appr ches a limit s n co, th limit being 

sf~( s ) . I n f c we c n define in this way a conditional probe ili y 

measure on the subspace (of ze ro m asur ) of sequences (zn) which 

never vanish . recise s tat ment of th limiting result is clumsy, 

ut i may b given informally as 

heorem • 
3 

.:..;.;:;.==e m • 1 , L: r Pr < a>. Suppose that, n ....!'!S! n' - n 

~ ~ large. If ext inction has ~ occurred after n' generations 

~ zn/(1 + n ) has approximat ly ~ r r obability ~whose 

densi y is 4ue u > 

he proof is by means of he theor m of Fatou, using the 

r elation 

n-1 
f ~ ( s > • TT f , [f j ( s >J • 

j • O 

Besides zn, another random variable of interest is 

Z • 1 + z 1 + • • • , 
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here Z is the total roeeny produced in all generations . We have 

seen that ' f m _ 1, Z is finite ~~th probabili ty 1, nd we can 

consider its proba ility distribution . 

Let (s) be the n ratin func ion for Z, 

m r m 
( s} • 2: s P{ Z • r) • 2: rs . 

r•1 r• 

H ins and Ul m [?] nd 0 ter [1 5] ha e shown hat ( s) sati fies 

th functional equation 

(9) 

tt r ha investig t d th eGua ion (9) and has obtained n a sympt o ic 

expression for the coefficients 

5. { tter) L t ommon factor £_ the 

aubscr pta of ~ nonv nishing Pr• Then 

J l.£m•1, 

n 
,._, gn- I 

t../2nf (1} 
n m, for n- l(q) 

n - 0 , n 1 ( q) . 

(b) If 1 ' 
l 

(C>-))] 
CL-n -3/;. 

-q n n , 

• n~l(q), n 

here (j.. is ill r diu .. ~ !;Onvergenc E.! ( s) f!lli! (j... > 1 

m, n == 1 ( q) ; 

if m < 1. 
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Further results and details can be found in Otter 's paper. 

Otter bases his work on a probabil ity measure defined not on the 

space of sequences (zn) but on th space of "trees." For example, 

one distin uishes the pro eny of th second son of the fourth 

son, etc. 

~e shall only mention another roup of probl ms about which 

little is known, those cone rn d with findin the distribution 

of per or lower bounds for zn s n ran ~ over various sets of 

vc:a.lues . The istribu ion for t number of enerations to 
I 

extinction, in c s m 1 , h s been discussed in [;J. Another 

distribution of interest, bout which nothing seems to be _nown, 

is t hat of sup zn, if m S 1, nd of sup z
0

/mn if m > 1. 
l<n<tn 1<n 
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III. The u1t1dimension 1 Iterative Scheme · 

• consider in thi s ction the gen ralization of the mod 1 of 

·section II to the mult.idim nsional e se. Specifically , w consider 
1 k 1 

eequenc of vector random variab es zn • (zn, ···, zn) where zn 

repr s nte the numb r of obj cts of the ith ype in the nth 

en r tion. ( shall s, . bold-face lower c s tter for vectors, 

ol -t c upper case 1 tt rs for matrices.) Th types 1, ···, k 

m y be thought or as representing energy l ev ls in the case of 

n clear particles, or g groups in th case of biological or ni sms , 

et.c. as a t at an object of type i :xis tin in he nth 

en ra ion h pro ability p1 (r1 , • • •, r ) of producing in the 

next ener tion r, 0 c 5 of typ 1 , ••• r ob j ects of type k, , 
independently of pas hist ry or of w at is produc ed by other objects . 

e probab111tie pi(r 1 , •••, r ) , tog th r with specification of 

th initi . l a re te z0 det rmin the probability 1 w for the 

s u nc ( zn). 

ch o tr. th ory of th s processes h a been developed by 

~ J, eva t' y nov (16), and Sevas t 'yanov and v r tt and Ul 

olmo orov . [t 7]. sh 11 su riz om of their work and give 

s e rtt r re ults. wish to than Drs . Everett .nd Ul 

p ·1 sion o quot som ~ of the.ir results which hav not yet 

ppe red in the journals . 

for 

a fine r1 ( s) and f n { s) , i • 1 , • • • , k, n • 1 , 2 • • • • , by 

f! (s) • ~ P(a~•r 1 , 
r 1 • • • r >O , ' ~ 

••• 
k rl 

z •r )a 1 • • • n k 

I 
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e tllen Lave the rela tions 

(1) ' ( i~l( fb+l s) • r Lrn s), . . . i- 1,···,k; n • 1,2,···· . 

No de£ine the first-moment matrix 

wher m1 j is the xp cted number of obj eta of typ j produced in 

sin.gle generation by single obj ct of type 1. 'e excl d the 

rivi 1 c s ere 11 the m1 j v nish . 

Different! tion of (1) s 1 • · •· ives 

(2) 

s all consider th second-moment matrix lat r. e sh 11 assume 

th th econd mo ents E( zfzy }, 1, j • 1, • • •, k, are finit e. 

Sinc e all el ente of M are nonne ativ we can se the well-

no fac th•t M h s a positive char cteristic root hich ia 

at least a 1 rg in bsolute valu as '-DY other ch racteristic 

root a d which corresponds to a ch racteristic v c or ll of ho e 

element re no ne ative . If all the mij are positive, A is 

simpl and larger in bsolute valu than ny other characteristic 
I 

root, and every component of t e corresponding charac ristic 

vector is pos'tive. 'e sh 11 r s rve the letter ~ t.t:roughout 

ection III or the lar est positive characteristic root of M. 
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By analogy with the elas ific ion of in arkoff chaine 

we can introduce t.he no ion of a _£lostd group of types [17], a e t 

of typ e whose progeny all belong to the s t. A closed group is 

ndeeompq••b1• 1f it do a not contain two disjoint closed subgroups. 

If the typee 1, •••, 

or n 1 deeqmposapl 

ronn an ind composable group, we sh 11 spe k 

A clos d roup is c lled a final 

if, with probability 1, the pro eny in the xt generation of 

n object in t roup 1 exactly one object in the group, and if 

the roup cont io no proper closed subgroup w1 h this property. 

A process sue th t for any z0 compl t extinction is bound to 

occur is call 

~~~~ 6 (S va t•yanov). ln order~! pr2cess ~degenerate !l 

......,..--.,...,.e""'a.-.r,.! o.nd uffi ci ent _ =. ( ) ). S 1 ..!!!! (b) there !.!:! !!2 

fina.}; groups. 

e h 11 say th t process is completed if only objects 

l ongin to fin 1 groups r ain. Suppose that th r are K final 

groups, < k, and let q1(r 1 , • •• r 1 ) .be the probability that if 

the initial object is of type i, the process will be completed, 

with r 1 obj cts i n final group 1 • • • • ' r in final group K, remaining. 

or si plicity {and in connec ion with Theorem 7 only) we can 

suppoe tha an ob j ect which dies ie transform d into a particular 

type hie repr eents a death state. This ty e then forms a final 

group. 

Let H1 , ···, H b sets of integers, Hr being the numbers 

corresponding ~o the types in the rth final group. Let 
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Theorem 7.(Sevast'yanov and Kolmo orov). Tb functio s ~(s), 

~ (s ~ 1, are uniquely d termined ~ the eguations 

(J) i 

r • 1 , ••• K. 

The quantities <ri ( 1 ) 1 are th probabilities of "completion 1 " 

a p eviou ly d fined, if the initi 1 nc stor is of type nd 

can be obt in d by solvin (J) with s • 1. 

If th re are no f n 1 groups, then w may consider the proba

bility !i t t extinction will occur, if t e initial object was of 

type i (dropping th convention tha th "de th state" is one of 

the types.) The quantiti s !i are th n det rmined by the equations 

( 4) i • fi( 1 k) , i - 1 , k. . . . . .. 
t t 

If e m e th turth r assum tion tha for each 1, j • 
1 ' 

••• k , 
ther i pos i i ~e prob bili y ha an object of type i will hav 

on its pro eny in som future eneration n object of type j, 

thPn ai • 1 for a single i impl i s !i - 1 for 11 i, nd a 1 • 1 - -
if &nd onl y if 1 • 

Theorems 6 nd 7, in slightly l ess gen r 1 fo , were proved 

by verett nd Ul [4]. 

e s 11 say that system is 2oeitivel;Y regular if A is 

simple nd ar er in m gnit de than any o~her characteristic root 



and 1! for every 1, j 1, ···, k there 1~ 

-18-
P-152 
r v. 6/14/50 

positive probability 

that an object ot type 1 will have in some gener tion of it~ progeny 

an object of type j. (In other word~, tor e ch i, j th re is an n 

such ~hat th elem nt in the ith row and jth column of Mn is positive. ] 

If every ele ent of M is pa.itive, the positively r 1lar c se is 

saured. 

In th positively r gular c se w have, from matrix th ory, 

where 1 1 • M1 , • 0, nd ev ry el men or M1 is positive. The 

atrix 1 haa ran 1 n in f ct has the form 

here fL 1
, •••, fL r t component of th right ei envector of 

A .-nd V 1 
, • • •, V k are those o£ the lett i nvector. The 

compon n fLi and 7Ji ar all po itiv , and with th p;.oper 

nor lization then have 

oreover, th re is n (J.. 1 , 0 a, < 1 • such that 

. wh r nu is the sum of th absolute values of ~he elements of 

Duri the r ind r of this section we consider only ~he 

poeitiYely re lar case ~th ~ 1. 

n 
• 
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Theorem Sa. Suppose ~ ~ > 1 and the SI§tem 1! poaitive+x 
. 
regular. Then the random variable 

converges with prob biliti 1 ~ ~ random variable S. 

•r eorePJ 8b . (Everett nd Ulam) • Suppose A > 1 and the sypt!lg 1! 

positivel~ regul r. ill the numbers ai < 1 ~ de!'intd Ju: 

guatione (4). Suppose~ initi 1 object ~ g£ 1I£! i; ~ 

_£ ~ system does ~ become extinct .1h._ ..-.-,;;;..;;;o.;;.

pproach .....:JJl ,eroba ility 1 !Ja ratios 7) 1 
: V: 

omponents of the left eigenvector .2£. A • 

1 tl k 
Z • z : • • • • • 
n· n · n 

• • • : 1) k 5ll !:h.! 

Theorem 8b , which appeared in a declassified Loa lamos 

eport [ ] issued in 1948 , is part of extensiv r~sults to be 

ublis hed later. As s ated by th uthors, it ppli d to h 

pace of "trees" or " raphe"; ef. the remark on Otter's work 

n Section II. As we sh ll se 8b c n be used to prove Sa. 

lo ever, we shall also outlin a simple method which proves the 

wo together, and as the merit of gi vin' an error 't',ena. 

nalogously with (J) , Section II, we h ve 

E ( z n + p f z n ) • z nM p • 

f e divide both sides of (6) by An+p nd multiply both sidta 

n the ri ht by t,t e col n v ctor f-', the right eigenvect of 

). , we get 
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(7) 
z Mp ^'   z /" 
n     .  n 

n n + p 
/ ^ 

n 

Let E    denote the scalar random variable defined by 7n 

^n   n  ' A 

Then (7) gives 

(8) 

Use of the theorem of Doob rpferred to in Section II proves convergence 

with probabilitv 1 of the secuence c.  *     Knowing from Theorem 8b that 

the direction of z     (if it does not eventually vanish) approaches a n 

limit, the fact which we have Just observed, that the scalar p.-oduct 

z Z^-' / X  converges, proves that each component of the vector 

%   / \      converges, and Theorem 8ä follows. 

MS en elternötive proof of Theorems 8a and 8b we consider the 

sequence w^ ■ * /A . Krom (6) n      n   n v 

(9) ülw A [w ) - w MP/XP . n-^p' n    n  / ^ 

Kelation (9) looks very much liKe its one dimensional analogue, (4), 

Section II.  In fact, if M has an inverse, the resemblance can be 

made more striking.  However, this line of argument, bused on Doob's 

theorem, has not been carried out.  Instead we arpue on the moments 

as follows.  From (9) and remancs madj below it will appear that 

(10)    ^n-p-'n^-^J - 0(^5). 
0 < (X^ < 1 . 
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In particular, 

( 1 1 ) 1 1 n E(wn+p- "n) • Q(a ) , i. 1, ···, k. 

bus for each i, w~ converges with prob bility 1 to a random variable 
i nd we h~ve The re 8 . e h 11 see b low th t the second 

mom nt m trix of th w1 , ( Ewi j) has rank 1 • 'I' hue the wi are 

perf c ly correlated. lso, ·for e ch i nd j, wi • 0 if and only 

if wj • 0, wit·h probability 1. Hence, if wi rf 0 th r tio wilwj 

is th sam as the ra~io E iiE J, with prob bility 1. Since, as 

w shall s e, Ewi I j • z,Ji I Vj, Th orem 8b follows. 

To obtain (10) we examine the second moment m trix of zn. 

If u • (ui} and v • (vi ) r v ctors w denot the matrix (u1vj) 

by u'v. If u and v re r ndom v&riables th n E(u'v) • (E(uivj)) , 

hil th v riance of u ia 

' e sh u e M' to denot th transpos of M. 

et er be th k-component vector with 1 in the rth place 

nd %ero 1 e r • Define 

if i ., j; 

Q~fr 

aal s , ••• ••sk•1 



-22- 

rev.   ö/H/50 

V    -  variance  of   z, ,  ^iven   z0   -  e   , 

B r  - E(zl|z0   - er)t(z1\z0   -  er) 

r r r    ' 

C    -  tlz'z   )  ; n n  n    ' 

q     -   Ez     -   (q   ) . 

From   elementary  considerations  we  get 

(12) .     ,   - M'C M   ^  V  V.q1 

n*1 n        z-—,    iHn n   =0,   1,   ••• , 

Lu    ■     iOzO    » 

whence 

(13) 

7^      \n    0 f     X'  J-i    Ar"J Vi^   ' A2j'7 A" 3   ' 

From   (13)   we   uerive 

(14) 

^ 

n 
7n 

n 
* OiaV), vj       ^ 0^3   <   1    i 

c - M, I c0 ♦ A-   X   5 v J M,   , 

[recalling   that A]   -  lim M  /A  ),   where   c5      --  the i       component 
n^oD 

o f   the   vector  ZQII  ~ M/A2)      .   I   being  the   identity matrix. 
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from   (I/*)   ana   the   reiatio:.   of M,   to M we   aee   that   C   has 

ran K   1   and   sät i s 1' i e s 

(13) CM11  -  ;nC  - M,nC, :.   - u.   1,   '••. 

Now   couriaer w ,n 
n 2   /A  •     If  r-  ^»na   p   are   nonnegative   integers, 

lüj EFlw' W'){W L   n-»p        n      n + p        n J 

A 
^n-^-Jp       x<:n n  n*p 

c w   ^   w r.*p  n 

But   from   ; 1 r/) ,    ( U) ,   and   (C) , 

(17) t (w w ^ 
n  n*p 

E ( z   r   A   ) 
 ■.  r. •» p ^Vn1^ 

A 
^n-^ p 

A 
:r AP 

[c - 0(&5)] \ * - * O(a^), 0  <   ÖL*  <   1 ; 

- ,-y n similarly  i(w       w   )   -   C   +   Oi>>-j).      from   (17),   (16),   and   (U),   we 

have   (1 -J ) ,   q . tr ,d. 

Hegarding  the  ai stributi or.  of   w,   we   have 

(1 = ,w   -   z oM,   - Z 4 ^^ ^ ' .   I''.   "•.   I 

,w' £w - y. i ^o ^o' MjCuM, 

end ,   from   ( 1 ^ )   ar.o   \ 1 8 

(19) 
1 W'  ^   r i     Xl / a r ■ i a n c e   u f  ^   -  — M , !   ^_ ^ V.IK,   . 
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We   recall  that  V.   it   the  Vori^nce matrix  of  Z],   given   ZQ  
m  e., 

^nd   o      -3 the  1    '   component  of  the   vector   z0(l  - l-./X^] 

The w   ,   being   perfectly   correlated,   and  the  random   variable 

S   of  Theorem 8a,   have   '.he   same  aistrlbution  except   fcr   constant 

factors. 

Let ^ Is) be the 'noment-renerati nf functio.i of S , if there 

wcs initielly one object of type 1. It is then not difficult LO 

show that  the  functions  ^   (s)   satisfy 

(20) jHU.    -    f^'ls).    •••,    ^(5)], Ke(s)  _ o,     i , k 

4 

The  functions  6  (s)   are  uniquely  determined   by   (20)   and  the   require- 

ments 

.1 1 i 

-  E(S|z0   -  ei) , 

th vvh.ere  e.   has   1   in   the  i       place  and   zeros   elsewhere. 
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Feller [1 SJ was appar ntly the firet to discuss branching or 

h processe wh re a continuous time paramet r is involved, nd 

th n there bas been n extensive literature . For ref rences 

ag in to Kendall DJ • The point of departure for these 

rea ent h s usu l1y been the specifica ion of functions b(n, t) 

nd d(o, t) wher b(n, t)dt is the probability of a birth and 

d(n, t)dt the prob bi~ity of death between t and t + dt if the 

ize f the popul tion at t is n . en th se functions re 

specified, diff rential equations can be obtained for t he proba

bility of given numb r of objects at t . ost r atments have 

ass ed the birth d death rates to be ind pendent of the age of 

he objects, a1thou h allowin th to de nd on absolute tim • 

e sh 11 discuss the quea io of ge dep ndence in Section IV . 

The model which we now consider is determined as follows. 

Consid r an object xis ing at tim t . Assume that there is a 

probability 

th t the object ie transfo d into r objects, r • 0, 2 , ) , ••• 

bet en t nd t + ~t, ~t > 0, here 

b • 0 +b + b +•••<m, 

and prob bility 1 - b4t + o(6t ) of no being tran formed. We 

assume th t the tr nsformati on probabilities are independent of 

the g of t e object nd t e number of other obj cts existing. 
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Then if ther i initially a single ob ject t t • 0, and if r (t) 

is t e probabi li y that there are r ob jects at t we have the 

equations 

dprt( t ) 
(1) d • (r+l)b0 pr+f(t)-rbpr(t)+ (r-1)b pr-1 ( t) 

r • 0, 1 , ••• , 

it the initi l conditione 

( 2) r r 1 , 

p,{O) • 1. 

Vari ous special cases of equations ( 1 ) have been studied oth 

directly and by means of the g neration function 

(J) 

w i ch satisfies the equat ion · 

(4) 3F( e. t) • ~(s) aF(s , t) 
d t '7 as 

where 

( 5) ~(s) • bo-bs+ b~a + •••• 

It is ell nown that if e define 

n • , 1 , •••, h > 0, 

the functions fn (s) re the succe aive iterates or the function 
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f( ) • f 1 (s) • F(s, h) . Thus very scheme of the sor determined 

bJ equ ti ons (1) has a ~imple iterati ve cheme imbedded in it. 

The converse of this st tement is not true. It ia cl ar that 

it f(s) is an arbitrary enerating function there ia not in neral 

a cheme de ined by 

h that 

set of equations (1), and a value t 0 oft 

(6 ) F(s, t 0 ) • f(s). 

s is obvious, for example, if f(s) ia a polynomial of d • 

> ar thus led to as under wha circumstahe e it is -
po sible, wh n enera in function f(s) is iven, to find a 

t ily of gen ra ing functions F(s, t) obtain d from quationa ot 

type 1), wi h (s, t 0 ) • f(s) for ome t. To b pr ci e w shall 

y tha probability en ratin functi on f(s) belon to clas Q 

( itten f E C) if there exists a f ily F(s , t) , 

a ch hat 

(7 ) (a) 

(b) F(F(s, t 1 ), t .:) • F(s , t 1 + t~), t, ~ o, t ~ 0, 

I I 5 1 ; 

CD 

(c) F(s, 1) • f(s) -~prsr; 

(d) F(s , t) • s + t ;(s) + o( ), t 0, Is I < 1 
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t«G 
^(s),  and 

where    Ms)   is  some   function deiined   for   jsj 5 1   and   o(t)/t —> 0 

unifonnly  in  a.     Sonie  kind  of regularity  condition   is   necessary 

and   (d)   is   convenient,  although  weaKer-looking assumptions   could 

be  substituted.     From  (d)   we  see  that ^f  (s,   t) 
c; t 

^(s)   is  a  power  series  convergent   in  the  unit   circle. 

using   clasaical  work  on  the   iteration  of   functions  and  the 

general   theory  of Markov  processes,   we  can low detennine  whether 

a  given  f £ C,   provided  f(G)   ■  p0   "  0.     The  literature  on  Iteration 

goes  back to  Abel   and   is   vast.      1   should   like   to   thank   Professor 

David   Hawkins   who  first  called   this   field  to  mv   attention. 

We  note  that   if \>0  -  p]   " 0,   f(a)   can never  belong  to  class  C; 

in what   follows  we   set  aside   this   case   as well   as   the   trivial   case 

Pi   "   1. 

Theorem 9a.     !_£  p^       0,  J <  {. !   ^  1 ,   a  necessary   and   sufficient 

condition  that   f(5)   belong to  class  C  it  that  each  of  the ^uant11 IPS 

b   ,   r*t,   3,   **•»   should   be  nonnegative,   where   the   b     are  aetermined 

by the  recurrence relations 

(b) b     • r 
Pi - P, 

i^rJ-^-J-"^.,]. /', 

b,   -   log  p, 

The exact value of bj ■ -b is unimportant so lon^ as it is negative; 

p *  is the coefficient of 8r in [f(s)j^. 
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The c•iterion of Theorem 9a is not very eat isfac ory since it 

is often difficul t to apply, and sine it does not giY any obvious 

r~lation hip between memb r hip in class C nd tb 

properties of f(s). 'e c n, ho ver, give 

neral an lytic 

Theore b. !f Po • 0 , 0 < Pt < 1, ~ f(s) is tnt r , (s) ~ 

n£_ be ong to class c. 

We sho first that h criterion of Theore 9 i sufficient. 

From the classical wor of Aoeni s Do) w know that if t(s) ia any 

function analytic in a neighborhood of s • 0, ith f(O) • 0 and 

< f'(O ) < 1, there is a family 

satisfyin (7)-{b) , (c) , und (d) in a neighborhood of a • 0. The 

function ~( s) satisfies tha r elations 

( 9) ;u (s, t)J .. ~(s) a (s , t} oS , 

( 10) qF(s , t) • f,( s) aFt s . t l at -a s 

( 11 ) t;'(O) • log Pt • ~ ( 1-) • lo lli, 

which a r e vident from {7)-(b) and (d) . Puttin t • 1 in (9) ivee 

( 1 2) c;cf( so - (s)f' (a), lsf S 1 • 
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From   (lie)   it,   is   clear  that    ^(j)   ■ ü;     (11)   and   (12)   then detenuine 

uniquely  the   coefficients   in   the   power  series   for    £(5),  which  are 

just   the  numbers   b    of  (3)   with   b]   ■  log   p,.     If  the b   ,   r > x,   are 

nonnepative   then    2M 3)   must   be  analytic   in   the   interior  of   the  unit 

circle   since   (lO   shows   that    £ls)   is  analytic   for   every  real   8 

between  0   and   1;   moreover,   from   (W)   we   have     c( 1 )   ■ 0  so that 

cc 
(13) X  b^   "  ^ • 

j-1    J 

From   (10)   we  see  that  the  p   (t)   satisfy the  well-known  equations 

dp   (t) r-1 
(H)       ~-Jz~~   «     Zo(r-J)bJ,lPr_J(t), r   -   1.   2,   —. 

but  now it  is   easily seen  that   equations   (14),   which are  in the 

standard  form  of  the differential   equations  for  discontinuous Markov 

processes,   have  nonnegative  solutions  uniquely  determined by the 

initial   conditions 

pr(0)   -  0, r / 1, 

Pi(0)   -   1 , 

00 

which   come   from   (7)-(d).     The  general   theory   insures   that ^  p   (t)   <v 1, 
r-i r 

CD 

but the fact that F(1, 1) - f(1) - 1 shows that ^ Pr^^   "  1 for &ii 

r-1 
t > 0.     Thus  the  nonnerßtiveness  of  the  b    is  sufficient.     The — ^r 

necessity   is   obvious from   (14). 

We   shall  obtain Theorem  9b  as  a  by-product   of  Theorem   10. 
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We   observe  that   if   T €  C,   with  i'{0)   " U,    ^_ r  p    < OD  implies 

>    r  b     <a ;    i.e.,    ^"(I-)   voo.     This   can  be   decuced   from   ( 1 ^) . 

Moreover,    ^"(1 —)   < 03   implies ^ r   p    <- OD ;   this  seems   to   be   difficult 

to   oh tain  from   (1*:)   directly  tut   can  be   demonstrated   ty  actual 

construction  of F(s,   t)   as  the  solutior   of   (10). 

suppose  then that   f  €  C,     f(0)   "0,     ^ r"P    < ^•     Prom  Section   II 

we   «now  that  the  random  variables   z  /m     converge  with   probability   1 

to  a  rnndom  variable  w whose  moment—generating  function   JZ((S)   satisfies 

^(ms)   ■   f[j^(s)j.     Alternatively we   can   say   that  th*1   random   variable 

i(t)   whose  probaiiiities  are   aefined  by   (14)   is   such  that   lor  any 

h>  ü  the  jequence   z{nh)/Ez(nh),   n  "   1,   2,   **',   converges  with   proba- 

bility   1   to w.     Since   it   is   often  the   probabilities  b,  which are 

known   initially   rather   than  the   p   ,   it   is   convenient   to  determine 

^(s)   in  terms  of    £L( s) . 

Theorem   10.     Suppose  f€C,     f(j)mU,     ^_rp    ^UJ.     The   inversi 

function  of ^(s)   _i3  given  by 

(15) ^"'(u) -d-uiexp^   r^^^^r^ LTTTT 1 - y. 
ay 0   ^   a < 1 . 

(We recall that  E'( 1 ) ■ ICF :"'('.] ■ lop m. )  There are several ways 

of gettinp (IS).  We start fror, (12), which implies 

(16) ^rv--: 
n-1 

v;s) TT r[[ :s]2 

r(s)f'(s) . 
n 
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Since the moment—generating function of z /m  is f (e c n       n 

/ n s 1 m ) we have 

(17) 

(18) 

lim f (e3 m ) - ^(s),     Re(s) < 0 
n—>a) 

n —>OD 

ffn,e=>n,] - lim 
n—>«D 

,»>PfM.
8/»n) 

m n 

^(8), rte(s) < 0. 

^mn ^e can justify (18) from the fact thtc f (e"J/  ),  n " 1, ^, n 

,re lüoment-generating  functions  for  the  random  variables  z  /■   , 
3/mn 

whose   secona  moments  are   uniformly   boundec.     Now replace   s   by  e 

in   (16),     He(s) < 0,   and  let  n—>OD .      The   left  side of   (16)   approaches 

£,[^(9)]   while   the  right  side  approaches    •J!(1)^,(8).     We  thus  have 

the  differential  equation 

(19) ^0(8)] -  ^'(1)5^(3), 

which, together with the condition 

—cc < 3 < 0 

-1 
r; ^ (u) Hu - 1 

u-1- 

gives MS). 

Theorem 1J holds even if f(0) / 0 provided m ■ f'(l) > 1 

(i.e., even if bo / 0 provided ^'(1) > 0.)  As an example vre consider 

the caae 

S(s) - //- (A. ^)a 4 /s',   0 <  /^ <   A, 
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obtaining; 

Thus  the  random  variable w  is   zero  with  probability   rl\    and 

otherwise  has  an  exponential  distribution.     This   Is  a  special   case 

of  D.   G.   Kendall's  "generalized  birth  and  aeath  process,"   [l 9]. 

Suppose   now  that   fls)   belongs   to   class  Z  with   f(U)   -  J,   and 

that  ffs)   is   entire.     Then  it   is  easily  seen   that   ^(r)   Is  entire, 

and * - n    is  analytic  in a  neighborhood  of u  -   1;   using   (15)   this 

means  that   «^(3)   is  analytic  in  a  neighborhood  of  s   -   1,     Since 

f(s)   > s  for   s  >   1,   and  f'ts)   > Ü,   this  mear-s  that   (1-c)   can  be   used 

to  extend     :ts)   analytically  to  the  whole  positive  axis.     Since 

TTvT " ^ 1 4")»   y "** > we have 
"/      7 \   y     / 

(16) r OD 

U2 

dy      . 

-r 
From   (18)   and   (15)   we   3ee  that   ^     (u)   approaches  a   finite   limit   L 

as   u—>a>;    that   ir,   ^(L)   - cu.     But   this   contradicts   the  assumption 

that   ^  is  entire,      ihus  Theorem   9b   is   proved. 



-34- 
P-152 
re/.   6/14/50 

V'       Af.e—dependent   i rocesses 

In  ihe   brarichin^   pre cesses  arising   in  biology  the  probability 

that  an  object  existing at  some  time  be  transionned  in a given  time 

interval   is   not   independent   of   the age  of  the   object;   in  other words, 

the   are-speci 1'ic   birth   and   death  rates are  not   constant.     This  means 

that   the  ranaora  variaole  z(t),   the  number  of tbjects  at  t,   is  not   a 

KaiKov   process       There  are   then   several   possibilitias.     We  may   accept 

the  non-Markov   character   of  z{t)   and  work  with  it   as   well  as  we   can; 

or  we  may   choose  to describe  the   state  of  the  system at  t  by a 

function  zit,   x),   the  number   of   objects  whose   age   is   less  than  x, 

thus  restoring  the Markov   character;   or we may   approximate  by  intro- 

ducing  a   finite number   of types,   corresponding  to  age  groups,   and 

use  a  model   of  the multidimensional  sort  discussed  in  Section  III 

or  the  multidimensional   extensions  of   the model   of  Section  IV. 

We  shall   consider the  following model.     An  object   (of   age 0) 

existing at   t   ■ U  has  *  cumulative  life-length  distribution G(t). 

At the  end   of   its  life  the  object  is  transformed   into  r  objects 

with  probaoiiity  q   ,  r  ■ Ü,   t,   •••,   each  having  the  facie  life- 

length distribution  G(t),   and   so   on.     If  the   transformation   is  always 

uinary   we   have   the  case   of   bacteriological   fission,   with  which  we 

shall   be  primarily   concerned.     We  shall  summarize  some   results 

obtained  by  Bellman ana  Harris   [LJ   on  the   distribution  of   z(t)   and 

'.hen  consider   the   z(t,   x)   process.     Certain   results  about   z(t,   x) 

for a   related   but more   complicated model   have  been  given  recently 

jy  Kendall   [3j,   who  has  also  studied  our  variable   z(t)   for the  case 
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whe re G(t) is a convolution of exponential distributions [20]. 

et 

pr(t) • Prob[z (t) • rJ 

If the initia object is transformed into r objects t time y < t, 
r 

the generating f nction for the number of objects t t i (F(s, t-y)] • 

Thus s e hat F(s, t) satisfies 

{1) F(s , t) • J
0

t h0 ( s, t-y)]dG(y) + a[1- G(t)] 

where e have put 

Equation { ) determines F(s, t) hen G(t) and h(s) are given. Arguments 

similar to those used or the model of Section II show that then is 

a posi~ive probability t at z{t) never v nishea (and therefore goes 

tom) if nd only if 2: r qr > 1. 

f G(~) is a step-function with a single step, equation (1) 

giv s the iterative scheme of Section II; if G( t ) • 1 - e- ct, where 

c is const nt e h~ve the Markov case of Section IV and in fact 

eq atio ( 1) can be reduced to a partial dif erential equat on of 

t e type of ( ) , S ction I V, in this case . 

In the remainder of this section we· shall be exclusively concerned 

with the case 2: r q > 1. For simplicity of exposition we restrict r 
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ourselves to the binary case h(s) • s • e also assum that G(t) 

has density function o bounded total variation, 

( 2) 
t 

G(t) • Jo g(y)dy , ro(D J < I dg < Y > I < c:o. 

The case w re G(t) does not have a density is discussed in (21], 

brief account of wh 'ch ppe rs in (6]. 

Equa~i o (1) th n ta es the form 

rt 2 
(3} (s, t) • uo F (s, t-y)g(y)dy + s[1- G(t)] . 

Similarly, defining 

r 1 r 2 
F2(s1, s 2 ; t 1 , t ) • 2: P[z(t 1 )•r 1 , z(t .. d•r2]s 1 s 2 

rl ,r2 

we have, for t 1 S t , 

( ) £t' { s ' ' s tl-y, t -y)g(y)dy 

t 

+ s 1 F ( s · , t 2 - y ) g ( y } d y 

+ s 1 s [1 - G ( t }) • 

Der 

m1 (t) • E z(t), 

m (,h) • E(z(t)z(t+h)], h ~ o. 

hen ~1 (t} satisfies th renewal equation 

m1 (t) • 2fot m,( t-y)g(y)dy + 1-G(t) 
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and m2 (t, l) satisfies a similar equation. Under the hypotheses (2) 

we have 

( 5) 

1 - I 

where 

( 7 ) n • 1 
1 00 p ' 4p Jo e- Y y g( y)dy 

I 
00 -2fo y • Jo e g(y)dy, 

and (3 is the positive number satisfying 

(e ) 
1 00 -py 
~ • r e g(y)dy . vo 

0 

E > o 

( 
- t t 

It should be noted that the 0 e l in ( ) is independent of h. 

The derivation of (5) and (b), using "invers 

given in [ 1] . 

auberian' methods , is 

Th~ importance of (~) is evident if we define 

Formula (o) ives 

(9) 

In the case of the arkov processes discussed in Section IV, the 
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C    e on   the   ri^fil   side  ol    (v)   is   repiact-d   by  u.      Howrver,   ( 0 

iü   suiTicienl   for   our-   purpose,   lor-   usir.f   it   show^   lhat, 

(1U) L[w( t ♦ h )   -   W\ L )] O  e u 

From   (1J)   we   have 

Theorem   11.     Under  the   fassumptions 

his G(t) 
i   0 

g(y)dy, 
UL 

'drly! J   v a, 
u 

the   random  variable   z ( t) /    ( n, e''    )   converges   to  a   rando r.   van a L l^e   w 

with   probaLi i ^ ty   1   i_n   the   sense  that   for   each   h   > 0  the   sequence 

nh 
z(nh) / (n,e^ ' ), n " 1 , 2,   •••, converges with probability 1 tew. 

kather than the secuence ^h we could pick any sequence t  such 

— 6 3 t 
that ^_ 0(e   n) x UD.  Presumably, w(t) converges to w with 

n 
probability 1 in the usual sense also. 

Defining 0(s) - Le  , Ke(s) < 0, it can be shown that pis) 

satisfi es 

, 0°  ^   -^y 
(11)      ^(s) - /   ^ (se   )g(y)dy> 

■J u 
tie{ i, i     - o 

From (11) can be obtained bounds f"or the mar,nituae of 0(it) anu ^  {it   , 

t real, as t —^ ♦ oo, whence we get 

Theorem 1^'.  The d i sin ou lion of w i_s ^baolutely continuous. 

Details are in [^1]. 

We now consider the process z(t, x), wt.cre 



(1 i) z(t , x) a number of objects in ex · stence at 

time t of age S x 

a d we introduce 

(1 3) M(~, y, x) • expected number of objects of 
age _ x at t if there was one 
obj ect of a e y at time 0. 
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T e function z(t, x) has been considered often in detenn inistic 

p ula ion st dies . It is Known that under cert in conditions the 

a e struct re of a popula ion (under deterministic assumpti ons) 

c nver es to a limiting value (see , for example, Lesli [22] and 

Lotko. [2J] . ~e shall give a probabilistic analogue of this result 

f or our model which is also an an logue of the ttrati o theorem" of 

verett and Ulam (Theorem 8b) and is likewise connected with a result 

of Doob [: J in renewal theory. 

Let us f rst consider, heuristically, some properties of 

(t, y, x} . uppose t e a e structure of the population a ome 

ime t 1 is · ven by t function z(t 1 , x ). he exp ected numter of 

jects o age S x ut time t 1 + t is then 

( 1 4) 

et z(t) be the vector quantity representing z(t, x), considered as 

function of x . e may then d efine the operator M1' by the 

e CJ irement that 

( 15) M1' H(x) • fooo M( 1', y, x )dH(y ) 
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for any   function   H(x)   of   bounded   vaiialion   or.   (u,  CD).     The  operators 

T 
M       have   the   semigroup   property 

M    M       - M 

We   car.  n^v.   wr^te   the   symoolic  equation 

( U) E[z(f h) |z(T),  T^ t]   - Mhz(t) , 

which   is   the   analorue   of   (3),   Section   II,   and   (t),   Section   HI. 

T ihe   operators   M       might   be   called   "positive";   that   is,   they 

le-ive   the   cone   of   increasing functions   of  bounded   variation   invariant. 

Thus  one  wouxd   expect   some   of   the   classical   theory   on matrices   with 

positive  elements   to  carry   over;   in   particular,   the  existence   of a 

/   > U anu  an  n   ■   H(X),   an   increasing  function  of  x     such   that   for 

any  H  K   H(x)   which   is   increasing   and   of  bounded  variation, 

(17) Um    ^  -  c(H)n 
t—>oü     \ 

where c(H) is a linear functional of H; we have not made precise in 

what sense the limit in (17) should exist. 

nlthough a general theory for positive operators has been given 

by Krein and nutman [^3] and Bohnenblust and Karlin 126J , it does 

not appear to be reaoily applicable to the present case.  However, 

we can pet the results we need by usinr the fact that M(t, y, x) 

satisfies renewal type equations. 

We may define the age—aistributton of the pnoulaLion at t by 

the ratio z(t, x) / z(t).  *»e already know from Theorem 11 the behavior 



of z(t) for l arge t. 'e complete this with 

Theorem 1) . Define 

-~u 
e [1 - G( u)]du 

( 18) A( x) • • 

( 19) O(t) • sup (A( x ) - z(t, x )/z(t)] • 
O<x<m 
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Under the assumptiors of Theorem 11 , D{t) ~ 0 ~~probability 1 

(in ~ sense of Theorem 11 ) !§.. t ~ w . 

The function A( x) is the analogue of the "stable age dis tr ibutions" 

consider d in deterministic population theory. 

Altho h or s~mpl'city we are assuming an initial object of age 0 

for h rems 11 , 12 and 13 , the modi ficati ons for an initial object or 

arbitrary ~g~ are obvious . 

It is not hard to see that in order ·to prove Theorem 13 it is 

sufficient to show that for each x > 0, 

( 20) !A{ x ) - z ( t, x)/z(t) f ~ O, t ~ Q) • 

. e do this by defining 

( 21 ) 
I tSt 

w(t, x} • z(t, x) /(n 1 e ) 

and showing that w(t, x ) ~ A(x)w. The methods are similar to those . 
of [21] and we only sketch t he proof. 
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Let F(y, x, s, ) beth generating function for the number of 

objects of age $ x at t if initially there was one object of age y. 

Then F satisfies 

(22) F(y, x, s' t) • sJ (X - y - t ) [1 - G ( y , t)] 

t g{x+u}du 
+ fo F ( x, s, t-u) t 1 -G( y) 

( J) {0, X s' t) • sJ ( x- t) [1 - G{ t}] 

t 
+ fo F (0, x, s, t-u)g(u)du 

here J(t) is the Heaviside function: J(t) • 0 for t 0 , J{t) = 1 

fort> 0; G(y, t) is the lifelength distribution for an object of 

ge Y • 

G(y, t) • G(t + y) - G(y) 
1 - G(y) 

with the co vention that G(y, t) and g(v + u~ are to be taken as 0 if 
1 - G(y 

G(y) • 1. 

Differentiation of (22) nd (2)) with respect to s at s • 1 gives 

( 24) t- ( t, y' X} • J (X - y - t) [1 - G ( y' t) J 

2 r t M(t 0 x) g(y + u~ d 
+ Jo -u, ' 1 - G(y u, 
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t 
( 5) M(t, 0 , x) • J ( x -t) [1-G(t)] + 2Jo M(t-u, 0, x )g(u)du . 

Let 

-t(J 
(t , 0, x}e dt. 

Since M(t, 0, x) S E(z(t)] • Q (e~t), crus, x) is defined for every <S' 

wl ose real part is > (:3 • 
( .25) gi v·es 

( 2 ) 

aking Laplace transforms of both sides of 

The as s umptions we have made enable us to deduce from ( 6) , in the 

manner of [ 1] , tha 

(27) 

e can then show that 

E > o. 

g( y + t ~ dt 
1- G(y 

( 8) ( t t y, X) • --..;..------------------

10
00 Rt 

t e-fJ g(t)dt 

again with the conve nt ion tha t g(y + t )/[1 - G(y}] is 0 if G( y) • 1 . 
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We have used E to represent a positive number, not necessarily the 

same e ch time. 

Thus we see that the expected distri ution of ages settles down 

to A(x). To see that the actual distribution of ages does so we have 

to consider the joint distri~ution of z(t 1 , x 1 ) and z(t , x2 ). 

Define F(y, x 1 , s 1 , x s , t 1 , t ), for t 1 < t , as the joint 

generatin function for z(t 1 , x 1 ) and z(t , x ), iven . that the initial 

object had age y. Then F satisfies 

tl 
(29) (y,x 1 ,s 1 ,x2 ,s2,t 1 ,t ) ""fa F

2
(0,x 1 ,s 1 ,x2 ,s ,t 1 -u,t~-u )g(y,u)du 

tl 
+ [J(xl-tl-y)sl + 1-J(x,-t,-y )] r 2

(0 ,x2,s2,tz-u)g(y,u)du 
J t, 

• [1 - G ( y , t :cd] , 

where g( , )d • dG(y, u) • g(y + u)du/ [1 - G(y)] if G(y) < 1, and 0 

if G( y) • 1 

Put t 1 • t, t 2 • t + 1' > t, nd let K(t, 1', y) be the expected 

value of the produc t z(t, x 1 )z(t+'l, x ) given th t the initial object 

was of age y. By differentiation of (29) we get 

( 30) 
t 

K ( t , 1', y ) • 2 <. r K l t-u , 1', 0 ) g ( y , u) d u 
IQ 

t 
+ 2Jc M(t-u, 0, x,)M{t+T-u, O, x 2 )g(y, u)du 

0 t+1' 
+ 2J(x 1 -t 1 -y) Jt M(t+i-u, 0, x 2 )g(y, u)du 

+ J(x 1-t-y)J(x2 -t-1'-y)[1- G(y, t+1')]. 
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'e first set y • 0 in (JO} . It can be sho~~, as in obtaining (27), 

that as t ~ oo, 

( 31 ) K( t, 1', 

for some £ > 0. The ()(e-Et) is independent of 1'. We recall that 

(32) roo -2~y 
I2 • Jo e g( y)dy , 

x -fiu 
A(x) • 2(3 Jo e [1 - G(u)]du. 

consider the random variable 

where w(t , x } is defined by (21 ) . Using (32), we see that forth& 

case where the initial object is of ge 0 we have 

(34) t ~ oo, € > o, 

with the (){ e-Et) in {J4) independent of T. Putting x 1 • x2 in (34 ) 

tells us that for each x, 

(35) E(w(t, x)- w(t+1', x)]
2 

• ()(e-Et}, 

so that w(t, x) converges in mean square to a random variable w(~, x). 
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Now  usinf,   (3^)   lor arlitrary   Xi   and  x^   we  see   that 

(it) Aix^wloü,   X))   "   A(x,)w(a),   x^) 

with   probat: lity   1.     Now w(a;,  CD)   •  w,   the  ranuom  variable  of  Theorem   11 

Putting  x,    - OJ,   xt   -   x   in   (jt)   then  ^ives 

(37) w (03 ,    X j    ■   A 1 X ) w. 

From   (35)   ana   (j7)   we  '  .ve 

a 38) EfwU,   x)  - M(X)W]     -   C  (e   CM , O). 

Fheorerc   1}   is  now a  consequence   of   130). 
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multidimensional analogue for the model of S ction V can 

be construct d, i which k types of objects are considered . The 

asymptotic behavior of the aments c n be discussed using systems 

of r newal-ty e equations. · e shall not pursue this topic furtt r, 

but co1s aer a special model forb cteriological mutation. 

hen b cteri are attacked by a bacterial virus, certain of 

the bacteria are sometimes resistant to the virus and c n transmit 

this power of resistance to their descendants . A priori, two 

hypotheses ould appe r to be possible: (a) the resistant bacteria 

arose as mutations before the virus w s added · (b) there is a small 

proba ility t any bacterium surviv s an attack of a virus; 

bacteria who survive an att ck transmit immunity to their descendants. 

n case (a) the b· cteria which survive the ori inal onslaught will 

occur in 'c ones" of various sizes, e ch bein the descendants ot a 

mutant. In c se (b) the survivors are randomly istributed throughout 

the me il.un. 

he problem o · distin uis in bet een (a) nd (b) was attacked , 

sing statistic 1 methoas, by Lu ia and Delbruck [ 7) . As part of 

the problem il is necessary to consider the distrib tion of the 

n ber o bacteria of h mut nt form (i .e., m t nts or their 

descend ts ) at a iven time if the ypot esis (a) is tr e . The 

mode chosen Lur and elbruck as as follows . The main 

bacterial culture s assume to gro determ ' nistically, the number 

t time t being 

t(t) • et 



• 

-4a
P-152 
rev. 6/14/50 

where N is ·the initial number. The probabili ty that a mutation 

arises in the time interval (t, t+dt) is taken as ~Netdt + o(dt). 

The descendants of a mutant increase deterministically, the number 

of descendants at time T after the mutant arises being e T . 

Let ) (t) be the number of the mutant form at t~me t. Under 

tLeir hypotheses, Luria and Delbruck ive the formulas 

E ~(t} • f tNet 

he distribution of mutations has also been considered by Coulson 

and Le , a mentioned in ['B], who apparently assume deterministic 

growth for the main population while th mutants multiply in an 

age-independent probabilistic fashion. They then determined the 

generating function for the number of the mutant form at a given 

time. 

e shall consider the application of a-dependent theory to 

the mutation problem. e retain the assumption that the parent-

culture grows deterministically . We have seen in Section V tha 

this is approximately true (under the hypotheses of that section) 

for cultures with a large number of individuals. Following Luria 

and De bruck we take the size of the colony at t to be Net, with 

a probability f Netdt + o( dt) of a mutation between t and t + dt. 

Sirice the number of mutants ie relatively small, w·e take a 

probabilistic model for their growth, assuming that F(s, t} is 

the generating function for the number of descendants of a mutant 
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existin at a time t after creation of the mutant; F( , t) may b 

the functior. of Section V, but cou be taken as some other function. 

Let H( , s, t) e the g neratin function for the number o the 

mutant orm at t, if t he moth r colony had siz N at t • 

usual type o reasoning shows that 

-f ( e t_1) 
e ( 1 ) H ( , s, t) .. 

J
0 

t p eYe -p ( eY - 1 ) F ( s, t-y) H ( eY, s , t-y) dy. 

• The 

can solve (1) e sily if we thi of our stoch stic process as 

depena · g on th two "time" parameters nd t. Considered as a 

unction of , the process is i fi itely divis ~ le, nd for each 

1 ~ o, t.l > 

( - ) H( 1 , s, t)H~ , s, t) • H( 1 + • s, t). 

Fro (2) we can write 

( 3 ) H ( N , s , t) • ex p [NL ( s , t ) ) 

where L(s, t ) is t he cumulant- eneratin function for the number of 

mu &lions at tim t. To determine L(s, t) we substitute (3 ) into (1). 

Corsiderin t h ~uotient 

H( S, t) 

as hows tlat 



• 

{ 4) t ~ r t L ( s, t ) • - f ( e - 1 ) + 0 J O eY F ( , t-y) dy. 

-so
P-152 
rev. 6/14/50 

Letting z'(t) be the n~~ber of the mutant form at timet, we 

have from (J) and ( ) 

( 5) 
t 

[z'(t)] • ? J
0 

eYm(t- y)dy, 

w ere m(t) • a Hs . t) I If m(t) """n1et, it follows from (5) that as s•t • 

(t>) E[z'(t}] ,-v f 

Similar expr ssions or hi gher moments can be found. 

The preceding analysis is of course valid only while t is small 

enou so that the total number of the ruutant form is negligible 

comp r d •i h the number of nonmutants • 
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